位置:成果数据库 > 期刊 > 期刊详情页
基于多维数据模型的交叉层关联规则挖掘
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
  • 相关基金:国家自然科学基金项目(60373069)资助;江苏大学青年基金项目(1241170006)资助.
中文摘要:

多层关联规则是带有一定概念分层的关联规更哇,它描述了不同抽象级别上数据项之间的关联性,且不同级别上的关联性具有不同的指导意义.但目前已讨论的多层关联规则,大都局限于挖掘同一抽象层上数据项之间的关联,因而,针对这一问题,本文对已有的FP—Tree算法进行扩充和改进,实现了既能挖掘同一抽象层上也能挖掘不同抽象层上数据项之间关联性的多层关联挖掘算法,即交叉层关联规则挖掘算法FP—Tree*.同时,在算法实施之前,还结合多层关联挖掘本身的特点,对现有的数据存储结构进行改进,提出用字符序列对事务项编码的方法,从而简化了大量的数据预处理工作.

英文摘要:

Multi-level association rule is the rule with the characteristics of concept hierarchies. It describes the associations among the data items at different abstract levels, and the associations at different levels have different meaning of guidance. However, all multi-level association rules under discussion at present are limited to mining associations among data items at the same level. Aimed at this issue, this paper gives expansion and refinement to the.already existing FP-Tree algorithm, and actualizes the FP_Tree * algorithm, which has the function of mining association rules among data items both at the same and different abstract levels, namely, cross-level association rules mining. Moreover, before actualizing the algorithm, this paper refines the existing data storage schema and presents a method of encoding the items as a sequence of letters, in combination with r its characteristics, so as to simplify the mass data preprocessing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212