研究了一类带转移条件的Sturm-Liouville问题在区间(a,c)∪(c,b)上特征函数的振动性,构建了一个与该问题相关的新的Hilbert空间,证明了具有分离边界条件的这类问题的第n个特征值λ_n(n=1,2,…)所对应的特征函数在区间(a,c)∪(c,b)上有n-1个或n个零点,除此之外,还有一个特征值λ_0所对应的特征函数在区间(a,c)∪(c,b)上没有零点.
Oscillatory properties of eigenfunctions of Sturm-Liouville problems with transmission conditions are investigated in a open interval(a,c)∪(c,b).A new Hilbert space is defined.We show that any eigenfunction forλ_n(n=1,2,…) has exactly n-1 or n zeros in the interval(a,c)∪(c,b) except that one eigenvalueλ_0 has no any zero.