位置:成果数据库 > 期刊 > 期刊详情页
A new simple method of implicit time integration for dynamic problems of engineering structures
  • ISSN号:0567-7718
  • 期刊名称:《力学学报:英文版》
  • 时间:0
  • 分类:TB122[理学—力学;理学—工程力学;一般工业技术]
  • 作者机构:[1]Department of Mechanics, Lanzhou University, Lanzhou 730000, China
  • 相关基金:The project supported by the National Key Basic Research and Development Foundation of the Ministry of Science and Technology of China (G2000048702, 2003CB716707), the National Science Fund for Distinguished Young Scholars (10025208), the National Natural Science Foundation of China (Key Program) (10532040), the Research Fund for 0versea Chinese (10228028). The English text was polished by Keren Wang.
中文摘要:

这篇论文为解决动力学的起始值的问题与二个控制参数论述含蓄的时间集成的一个新简单方法以便它的精确性至少具有与参数的有条件、无条件的稳定性区域一起的顺序二。当在方法的控制参数最佳地在他们的区域被拿时,精确性可以被改进到顺序三的活动范围。新计划能比一些存在方法完成更低的数字振幅驱散和时期分散,这被发现,例如 Newmark 方法和 Zhai 的途径,当一样的时间步骤尺寸被使用时。在新计划的参数上的时间步骤依赖者的区域明确地被获得。最后,动态问题的一些例子被给证明建议计划的精确性和效率在动态系统适用。

英文摘要:

This paper presents a new simple method of implicit time integration with two control parameters for solving initial-value problems of dynamics such that its accuracy is at least of order two along with the conditional and unconditional stability regions of the parameters. When the control parameters in the method are optimally taken in their regions, the accuracy may be improved to reach of order three. It is found that the new scheme can achieve lower numerical amplitude dissipation and period dispersion than some of the existing methods, e.g. the Newmark method and Zhai's approach, when the same time step size is used. The region of time step dependent on the parameters in the new scheme is explicitly obtained. Finally, some examples of dynamic problems are given to show the accuracy and efficiency of the proposed scheme applied in dynamic systems.

同期刊论文项目
期刊论文 3
期刊论文 53 会议论文 73 著作 1
同项目期刊论文
期刊信息
  • 《力学学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国力学学会 中国科学院力学研究所
  • 主编:卢天健
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:actams@cstam.org.cn
  • 电话:010-62536271
  • 国际标准刊号:ISSN:0567-7718
  • 国内统一刊号:ISSN:11-2063/O3
  • 邮发代号:2-703
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:352