位置:成果数据库 > 期刊 > 期刊详情页
基于分类冗余字典稀疏表示的图像压缩方法
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:河南理工大学电气工程与自动化学院,河南焦作454000
  • 相关基金:国家自然科学基金青年基金(61405055);河南省教育厅科学技术研究重点项目(15A510025);河南理工大学博士基金(B2012-0670)
中文摘要:

JPEG和JPEG 2000标准在高压缩率条件下解压缩得到的图像会出现失真,利用冗余字典的稀疏表示可以在高压缩率下获得较高质量的解压缩图像,但单一的冗余字典表示不能充分反映图像结构。针对上述问题,提出一种利用分类冗余字典进行稀疏表示从而实现图像压缩的方法。利用KSVD方法训练平滑和细节2类冗余字典,根据字典原子与图像信号相关系数和表示误差的关系,通过改进的正交匹配追踪算法对图像进行稀疏表示,分别得到平滑表示系数和忽略较小取值的细节表示系数,将这些系数及其对应字典原子的索引值进行量化编码,完成图像压缩。实验结果表明,与JPEG、JPEG 2000以及基于单一冗余字典的方法相比,该方法在高压缩率条件下可以获得视觉效果更好的解压缩图像。

英文摘要:

When images are decompressed at high compression rate,the compression standard JPEG and JPEG 2000 will cause distortion. The use of redundant dictionary for sparse representation can obtain better quality of image decompression at high compression rates,but the single redundant dictionary cannot fully represent the structure of image.In view of the above problems,an image compression method based on sparse representation of classified redundant dictionary is proposed. It uses Kernel Singular Value Decomposition( KSVD) algorithm to train smoothing and detailed redundant dictionaries respectively, and uses improved Orthogonal Matching Pursuit( OMP) algorithm to represent images sparsely according to the relationship between the correlation coefficient of dictionary atoms and image signals and the representation error, so that smoothing representation coefficients and detailed representation coefficients without much lower values are respectively obtained. Finally,these coefficients and their corresponding indexes of dictionary atoms are quantified coded to compress images. Experimental results show that the proposed method can get decompressed images with better visual effect compared with JPEG, JPEG 2000 and the method based on single redundant dictionary at the high compression ratio.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139