位置:成果数据库 > 期刊 > 期刊详情页
基于提升小波和分形的苹果树多源图像融合算法
  • 期刊名称:李明喜、毛罕平、张艳诚,基于提升小波和分形的苹果树多源图像融合算法,农业机械学报.38(10).91
  • 时间:0
  • 分类:TN911.73[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]江苏大学现代农业装备与技术省部共建教育部重点实验室博士生、副教授(黄石理工学院),镇江市212013, [2]江苏大学现代农业装备与技术省部共建教育部重点实验室教授、博士生导师, [3]云南农业大学工程技术学院讲师、博士生(江苏大学),昆明市650201
  • 相关基金:国家自然科学基金资助项目(项目编号:60575020)和湖北省重点学科黄石理工学院机械电子工程学科建设资助项目
  • 相关项目:自然条件下收获目标物的机器视觉识别定位研究
中文摘要:

 针对可见光图像与近红外图像特点,提出了一种基于提升小波和分形的多源图像融合方法。首先将已配准的多源图像分别进行提升小波分解,在各层的低频部分用分形维加权平均融合,高频部分用区域交叉信息熵和能量特性融合;再通过提升小波重构得到融合图像。利用苹果树可见光图像和近红外图像进行了实验,实验结果表明,融合后的图像符合视觉特性,综合性能优于传统小波变换融合方法,有利于对图像作进一步分析、理解和识别。

英文摘要:

The same object visual and near infrared images were fused in some agriculture pick machine vision systems. A novel fast image fusion algorithm has been proposed based on lifting wavelet transform and fractal dimension theory. Firstly, the registered original images were decomposed by using lifting wavelet transform respectively. Then, the decomposition low frequency components were combined with fractal dimension. The decomposition high frequency components were merged by region cross-entropy and energy features. Finally, the composite image was obtained by using inverse lifting wavelet transform. Experimental results demonstrated that the fusion algorithm is more effective in the fused image quality than traditional method based on wavelet transform. The fused image is suitable to human vision characteristic and is advantageous for further analyzing, understanding and recognizing.

同期刊论文项目
同项目期刊论文