本文主要研究以下类型函数方程组亚纯解的存在性和增长性问题{f1n(cz)=a(z) (f_1~(m1)(z)/(f_2~(m2)(z)),f_2~ n(cz)=b(z)(f_2(m1)~(z))/(f_1~(m2)(z)),其中a(z),b(z)为有理函数,|c|=0,1,n〉1,mi〉1(i=1,2).利用亚纯函数的Nevanlinna值分布理论与及复函数方程研究部分方法,获得了定理1,2,3三个关于函数方程组的结果,推广了函数方程中的一些结果.
This article investigates the problem of the growth and the exist of meromorphic solutions of system of functional equations of the form {f1n(cz)=a(z) (f_1~(m1)(z)/(f_2~(m2)(z)),f_2~ n(cz)=b(z)(f_2(m1)~(z))/(f_1~(m2)(z)),where a(z),b(z) are rational functions,|c|=0,1,n1,mi1(i=1,2).By using Nevanlinna theory of the value distribution of meromorphic functions and some methods of researching complex function equation,we obtain three results of the system of functional equations,which extend the results of function equation.