位置:成果数据库 > 期刊 > 期刊详情页
Parameter identification of inertially stabilized platforms using current command design
  • ISSN号:1007-2276
  • 期刊名称:《红外与激光工程》
  • 时间:0
  • 分类:TP316[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术] V241.622[航空宇航科学与技术—飞行器设计;航空宇航科学技术]
  • 作者机构:[1]College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China
  • 相关基金:Projiect(50805144) supported by the National Natural Scicnce Foundation of China
中文摘要:

Accurate parameter identification is essential when designing controllers for inertially stabilized platforms (ISPs). But traditional identification methods suffer from observation measurement noise and operating restrictions of ISPs. To address this issue, a novel identification method based on current command design and multilevel coordinate search (MCS) algorithm without any higher order measurement differentiations was proposed. The designed current commands were adopted to obtain parameter decoupled models with the platform operating under allowable conditions. MCS algorithm was employed to estimate the parameters based on parameter decoupled models. A comparison experiment between the proposed method and non-linear least square method was carried out and most of the relative errors of identified parameters obtained by the proposed method were below 10%. Simulation and experiment based on identified parameters were conducted. A velocity control structure was also developed with disturbance observer (DOB) for application in disturbance compensation control system of an ISP. Experimental results show that the control scheme based on the identified parameters with DOB has the best disturbance rejection performance. It reduces the peak to peak value (PPV) of velocity error integral to 0.8 mrad which is much smaller than the value (10 mrad) obtained by the single velocity controller without DOB. Compared with the control scheme based on sweep model with DOB compensation, the proposed control scheme improves the PPV of velocity error integral by 1.625 times.

英文摘要:

Accurate parameter identification is essential when designing controllers for inertially stabilized platforms (lSPs). But traditional identification methods suffer from observation measurement noise and operating restrictions of ISPs. To address this issue, a novel identification method based on current command design and multilevel coordinate search (MCS) algorithm without any higher order measurement differentiations was proposed. The designed current commands were adopted to obtain parameter decoupled models with the platform operating under allowable conditions. MCS algorithm was employed to estimate the parameters based on parameter decoupled models. A comparison experiment between the proposed method and non-linear least square method was carried out and most of the relative errors of identified parameters obtained by the proposed method were below 10%. Simulation and experiment based on identified parameters were conducted. A velocity control structure was also developed with disturbance observer (DOB) for application in disturbance compensation control system of an ISR Experimental results show that the control scheme based on the identified parameters with DOB has the best disturbance rejection performance. It reduces the peak to peak value (PPV) of velocity error integral to 0.8 mrad which is much smaller than the value (10 mrad) obtained by the single velocity controller without DOB. Compared with the control scheme based on sweep model with DOB compensation, the proposed control scheme improves the PPV of velocity error integral by 1.625 times.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与激光工程》
  • 中国科技核心期刊
  • 主管单位:中国航天科工集团
  • 主办单位:天津津航技术物理研究所
  • 主编:张锋
  • 地址:天津市空港经济区中环西路58号
  • 邮编:300308
  • 邮箱:irla@csoe.org.cn
  • 电话:022-58168883 /4/5
  • 国际标准刊号:ISSN:1007-2276
  • 国内统一刊号:ISSN:12-1261/TN
  • 邮发代号:6-133
  • 获奖情况:
  • 1996年获航天系统第五次科技期刊评比三等奖,1998年获航天系统第六次科技期刊评比二等奖,1997-2001年在天津市科技期刊评估中被评为一级期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17466