位置:成果数据库 > 期刊 > 期刊详情页
一种由粗到细的头发分割方法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2013.10.15
  • 页码:2391-2404
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所智能信息处理重点实验室,北京100190, [2]中国科学院大学,北京100049, [3]NEC中国研究院,北京100084
  • 相关基金:基金项目:国家重点基础研究发展计划(973)(2009CB320902);国家自然科学基金(61025010,61173065);北京市自然科学基金(41110031
  • 相关项目:图像与视频处理
中文摘要:

从图像中提取出头发区域,能够为头发分析、发型趋势预测等任务提供有利的线索.但是,头发的类内模式非常复杂,并且它与其他物体类间也常因光照复杂、表观特征相似等因素而难以分离.因此,头发分割是一个非常具有挑战性的问题.为了一定程度地解决这些问题,提出了一种由粗到细的头发分割方法.首先,该方法利用最新提出的利用视点进行主动分割(active segmentation with fixation,简称ASF)的方法,粗略提取头发分割的候选范围,保证头发区域的高召回率(准确率也许较低),并由此排除大部分与头发区域难以分离的背景区域;然后,利用特定于当前图像的头发类别信息,使用图割(graphcuts,简称Gc)法在限定的范围内进行更加精细的分割.具体地,采用均值漂移(meanshift,简称MS)方法对输入图像进行区域的过分割;然后,利用贝叶斯方法选择一些可靠的、有较大概率属于头发或背景的“种子区域”,针对头发和背景的种子区域,采用支持向量机(support vector machine,简称SVM)在线学习头发和背景的分类器,并将其用于预测每个像素或区域属于头发或背景的概率;最后,将得到的概率用以GraphCuts的初始化,求解得到最终的头发分割结果.实验结果表明,所提出的头发分割方法能够超越当前提出的头发分割方法.为了验证方法的可推广性,对其进行了一定扩展,并在马、汽车、飞机这3个类别的公开数据库上作了评测,取得了较好的性能.

英文摘要:

Segmenting hair regions from human images facilitates many tasks like hair analysis and hair style trends forecast. However, hair segmentation is quite challenging due to large within-class pattern diversity and between-class confusion resulted from complex illumination and similar appearance. To solve these problems to some extent, this paper proposes a novel coarse-to-fine hair segmentation method. Firstly, the recently published "active segmentation with fixation (ASF)" is used to coarsely define a candidate region with high-recall (but possibly low-precision) of hair pixels and exclude considerable part of the backgrounds which are easily confused with hair. Then the graph cuts (GC) method is applied to the candidate regions to perform more precise segmentation, by incorporating image-specific hair information. Specifically, Bayesian method is employed to select some reliable hair and background regions (seeds) among the ones over-segmented by mean shift. SVM classifier is then learnt online from these seeds and explored to predict hair/background likelihood probability, which is used as an initialization for performing GC algorithm. Experimental results demonstrate the approach outperforms existing hair segmentation methods. To validate the generality, the paper extends the method and achieves good results on the public databases of horse, car and aeroplane classes.

同期刊论文项目
期刊论文 39 会议论文 46
期刊论文 20 会议论文 37 专利 7
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609