在一张矩形的使流体化的床上的煤气固体的流动行为的数字模拟被执行由分离元素方法(DEM ) 的三在尺寸上。Euler 方法和 Lagrange 方法被采用分别地处理煤气的阶段和稳固的阶段。在粒子之中的碰撞力量,在粒子和墙之间的惹人注目的力量,拖当建立数学模型时,力量被考虑的力量,严肃, Magnus 电梯力量和 Saffman 电梯。软范围的模型被用来描述粒子的碰撞。另外, Euler 方法也被使用为稳固的阶段建模与 DEM 的结果作比较。流动模式,粒子平均数速度,粒子散开和在典型操作条件下面的床的压力落下被获得。结果证明 DEM 方法能在粒子之中描述详细信息,当 Euler-Euler 方法不能捕获微规模的特性时。不管哪个方法被使用,粒子的散开随气体的增加增加速度。但是聚在一起并且压碎粒子不能被模仿,粒子碰撞的精力损失不能因此被计算,由使用 Euler-Euler 方法的散开更大。另外,它被 DEM 方法显示出,与带的能力加强,越来越多的粒子能向上是 schlepped,稠密的暂停 upflow 模式能被形成。然而, Euler-Euler 方法给的结果不与真实状况一致。
Numerical simulation of gas-solid flow behaviors in a rectangular fluidized bed is carried out three dimensionally by the discrete element method (DEM). Euler method and Lagrange method are employed to deal with the gas phase and solid phase respectively. The collided force among particles, striking force between particle and wall, drag force, gravity, Magnus lift force and Saffman lift force are considered when establishing the mathematic models. Soft-sphere model is used to describe the collision of particles. In addition, the Euler method is also used for modeling the solid phase to compare with the results of DEM. The flow patterns, particle mean velocities, particles' diffusion and pressure drop of the bed under typical operating conditions are obtained. The results show that the DEM method can describe the detailed information among particles, while the Euler-Euler method cannot capture the micro-scale character. No matter which method is used, the diffusion of particles increases with the increase of gas velocity. But the gathering and crushing of particles cannot be simulated, so the energy loss of particles' collision cannot be calculated and the diffusion by using the Euler-Euler method is larger. In addition, it is shown by DEM method, with strengthening of the carrying capacity, more and more particles can be schlepped upward and the dense suspension upflow pattern can be formed. However, the results given by the Euler-Euler method are not consistent with the real situation.