位置:成果数据库 > 期刊 > 期刊详情页
基于量子微粒群算法的发酵过程模型参数估计
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金项目(60474030).
中文摘要:

量子微粒群优化算法(QPSO)是一种改进的微粒群优化算法(PSO),克服了PSO算法搜索空间有限和易陷入局部极值的不足,同时该算法具有参数少、易实现、收敛速度快等优点。应用量子微粒群优化算法,以谷氨酸发酵过程产物(谷氨酸)浓度数据为检验样本,以Verhulst方程为菌体生长模型,进行发酵模型参数估计。实验结果表明,基于QPSO算法的参数估计方法具有精度高、编程实现简单、计算量小等优点。

英文摘要:

Quantum-behaved particle swarm optimization (QPSO) algorithm is an improved PSO algorithm, which can avoid the shorts of finite sampling space and easily getting in local extremum. In addition, QPSO algorithm is simple implementation and fast convergence with few parameters. QPSO algorithm is applied to estimate the parameters of fermentation model; using product (glutamic acid) concentration data of fermentation process ofglutamic acid as test samples, using Verhulst equation as bacterium growth model. The experimental results show that this method features high precision with low computation, simple-operation and realizable.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616