位置:成果数据库 > 期刊 > 期刊详情页
基于粒子滤波的机车信号灯跟踪方法
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学计算机学院,成都610065
  • 相关基金:国家自然科学基金(61173182,61179071); 四川省科技厅项目(2011JY0124,2012HH0004); 四川省科技创新苗子工程(2011021)
中文摘要:

为保障机车行驶安全,由车载高清摄像机获取路况视频并识别信号灯及其颜色状态时,视频中信号灯目标尺度变化大、机车行驶抖动、复杂光环境及光圈自适应调节滞后等因素使得信号灯鲁棒跟踪与识别具有不小难度.针对信号灯跟踪问题,本文提出一种带检测矫正的粒子滤波跟踪方法,该方法在粒子滤波框架下对信号灯进行跟踪,并通过一个在线更新的模板对滤波结果进行检测矫正,以提高跟踪结果的准确性.为提高跟踪算法对光照以及目标尺度变化的适应能力,本文在对信号灯建模时融合了HSV颜色特征与局部二元模式特征.实验结果表明,该方法在较复杂的场景下能够很好地对信号灯进行实时鲁棒的跟踪,并且跟踪结果具有较高的准确性.

英文摘要:

For insuring the railway locomotive driving safety,the railway traffic light and its color state can be recognized from high-definition road condition video that acquired by on-vehicle camera.However,big scale change of traffic lights,locomotive shaking,complex lighting condition,and the delay of aperture adjusting would make the traffic light tracking and recognition difficult.In this paper,the authors will focus on the railway traffic light tracking and put forward a detect-rectified Particle Filter(PF) tracking approach,which first tracks traffic light with particle filter,and then applies an online-updating template to improve the tracking accuracy.In addition,aim to increase the tracking adaptability,the authors model the traffic light by combining HSV color feature and Local Binary Pattern(LBP) feature.Experimental results demonstrate that the proposed method can effectively track the traffic light in complicated background in real-time with good robustness and high locating accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542