假定(X,‖·‖)为实可分的Banach空间,X^n为其对偶空间,(Ω,A,P)为完备的概率空间,{Bn,n≤-1}为上升子σ-域族.讨论了随机集族本性上确界的性质,给出了集值逆Superpramart的逆上鞅逼近及集值逆上鞅在Kuratowski意义下的收敛定理.以此为基础,利用支撑函数证明了集值逆Superpramart在Kuratowski意义与Kuratowski—Mosco意义下的收敛定理,解决了集值逆Superpramart的收敛性问题.
Let (X, ‖·‖ ) be a real separable Banach space with the dual X^* , let (Ω,A,P) be a complete probability space, {Bn, n ≤-1} be an increasing family of subfields of A. Firstly, some properties of random essential supremum are discussed, set-valued inverse superpramart approximation and set-valued inverse superrnartingale convergence theorem in the sense of Kuratowski are provided, respectively. Lastly, set-valued inverse superpramart convergence theorem in the senses Kuratowski and Kuratowski-Mosco are proved, respectively.