该文利用环同态理论,给出了环kq+uFq+…+u(k-1)Fq上任意长度N的所有(uλ-1)-常循环码的生成元,l是R的可逆元。证明了R[x]/1〈xN+-uλ〉是主理想环。给出了环R上任意长度N的(uλ-1)-常循环码的计数。确定了环R上任意长度N的(uλ-1)-常循环码的最高阶挠码的生成多项式,由此给出了环R上长度ps的所有(uλ-1)-常循环码的汉明距离。
Let R denote the ring R = Fq + uFq +... + uk-1Fq, and )λ be an invertible element of R. By means of the theory of ring homomorphism, the generators of all these (uA - 1) - constacyclic codes of an arbitrary length N over the ring R are obtained. It is proved that R[x] / 〈 xN + 1 - uλ〉 is principal. The number of these (u)λ - 1) - constacyclic codes is determined. The generator polynomials of the highest-order torsion codes of all these (uλ- 1)- constacyclic codes are given. As a result, the Hamming distances of all these (uλ- 1)- constacyclic codes are obtained.