R^n中给定一开的有界连通子集Ω和范数日(ζ),考虑各向异性超定问题-div(H(△↓u)△↓ζH(△↓u))=1,在边界δΩ上满足非常数边界条件:H(△↓u)-2=cx·△↓u和u=0.如果这个各向异性超定问题有弱解,那么Ω具有Wulff形状.
Given an open bounded connected subset Ω of R^n with a norm H(ζ), we consider an overdetermined anisotropic problem of -div(H(△↓u)△↓ζH(△↓u))=1 with the the following nonconstant boundary condition:H(△↓u)-2=cx·△↓u and u = 0 on the boundary δΩ. If this overdetermined anisotropic problem admits a solution in a suitable weak sense, then Ω is of the Wulff Shape.