位置:成果数据库 > 期刊 > 期刊详情页
离散对偶代数Riccati方程异类约束解的双迭代算法
  • ISSN号:1003-3998
  • 期刊名称:《数学物理学报:A辑》
  • 时间:0
  • 分类:O241.7[理学—计算数学;理学—数学]
  • 作者机构:[1]西北工业大学应用数学系,西安710072
  • 相关基金:国家自然科学基金(11071196)资助
中文摘要:

利用逆矩阵的Neumann级数形式,将在离散时间跳跃线性二次控制问题中遇到的含未知矩阵之逆的离散对偶代数Riccati方程(DCARE)转化为高次多项式矩阵方程组,然后采用牛顿算法求高次多项式矩阵方程组的异类约束解,并采用修正共轭梯度法求由牛顿算法每一步迭代计算导出的线性矩阵方程组的异类约束解或者异类约束最小二乘解,建立求DCARE的异类约束解的双迭代算法.双迭代算法仅要求DCARE有异类约束解,不要求它的异类约束解唯一,也不对它的系数矩阵做附加限定.数值算例表明,双迭代算法是有效的.

英文摘要:

By using Neumann series of inverse matrix,discrete coupled algebraic Riccati equation with unknown matrix inverse in discrete-time jump linear quadratic control problems can be transformed into the high degree polynomial matrix equations.Then Newton's method is applied to find different constrained solution of polynomial matrix equations, and the modified conjugate gradient method is used to solve different constrained solution or different constrained least square solution of linear matrix equations derived from each iterative step of Newton's method.In this way, a double iterative method is established to solve for different constrained solution of discrete coupled algebraic Riccati equation.Different constrained solution of discrete coupled algebraic Riccati equation is only required by double iterative algorithm.But it may not be unique.Besides there are not additional limits to its coefficient matrix of discrete coupled algebraic Riecati equation.The effectiveness of the double iterative method is demonstrated by numerical examples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数学物理学报:A辑》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院武汉物理与数学研究所
  • 主编:李邦河 陈贵强 朱熹平
  • 地址:湖北省武汉市武昌小洪山西路30号武汉71010信箱
  • 邮编:430071
  • 邮箱:actams@wipm.ac.cn
  • 电话:027-87199206
  • 国际标准刊号:ISSN:1003-3998
  • 国内统一刊号:ISSN:42-1226/O
  • 邮发代号:38-214
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:5382