To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an accession of common wild rice (Oryza rufipogon Griff.) from Dongxiang in Jiangxi Province of China, as the donor, and a high-yielding Indica cultivar (O. sativa L.), 'Guichao 2', as the recipient, was used to identify quantitative trait loci (QTL) associated with yield and its components. Based on the analysis for the genotype of BC4F1 population with 87 SSR markers distributed throughout the genome and investigation of the plant height, yield and yield components of BC4F2, a total of 52 QTLs, were detected. Of 7 QTLs associated with grain yield per plant, 2 QTLs on chromosome 2 and chromosome 11 for grain yield, explaining 16% and 11% of the phenotypic variance respectively, were identified. The alleles from Dongxiang common wild rice in those two loci could increase the yield of 'Guichao 2' by 2
To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an accession of common wild rice (Oryza rufipogon Griff.) from Dongxiang in Jiangxi Province of China, as the donor, and a high-yielding Indica cultivar (O. sativa L.), “Guichao 2”, as the recipient, was used to identify quantitative trait loci (QTL) associated with yield and its components. Based on the analysis for the genotype of BC4F1 population with 87 SSR markers distributed throughout the genome and investigation of the plant height, yield and yield components of BC4F2, a total of 52 QTLs, were detected. Of 7 QTLs associated with grain yield per plant, 2 QTLs on chromosome 2 and chromosome 11 for grain yield, explaining 16% and 11% of the phenotypic variance respectively, were identified. The alleles from Dongxiang common wild rice in those two loci could increase the yield of “Guichao 2” by 25.9% and 23.2% respectively. The QTL on chromosome 2 increasing grain yield of cultivar is actually a major gene, which did not coincide with any previously published QTLs in rice.