位置:成果数据库 > 期刊 > 期刊详情页
一种粗糙集-决策树结合的入侵检测方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP309.5[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中南大学软件学院,长沙410075
  • 相关基金:国家自然科学基金面上项目(No.61073186);中南大学研究生教育创新工程立项项目(No.2010ssxt211).
中文摘要:

针对入侵检测系统收集数据海量、高维、检测模型复杂和检测准确率低等问题,采用粗糙集属性约简的优势寻找与判断入侵与否相关的属性,利用决策树分类算法生成模型并对网络连接进行入侵预测分类检测,从而提出了一种粗糙集属性约简和决策树预测分类相结合的网络入侵检测方法。实验结果表明,该方法在入侵检测准确率上有很大的提高,对DoS攻击、Probe攻击和R2L攻击的检测效果均有所提高,同时大大降低了检测的误报率。

英文摘要:

Aiming at the problems of high-dimensional massive data collected in the intrusion detection system, complexity and low accuracy by the model constructed by decision tree, the attributes of the network connections related with intrusion are selected because of the advantage about rough set, and then the model built by decision tree is used to classify the network connections in prediction, so a method for network intrusion detection has been developed, which is based on the attributes' reduction of rough set and the predictive classification of decision tree hybrid in this paper. Experimental results show that the predominance has been proved, the accuracy has been im- proved in detecting DoS attacks largely and in detecting Probe and R2L attacks, at the same time, the rate of false alarm has been decreased notably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887