位置:成果数据库 > 期刊 > 期刊详情页
飞行时序数据相似性挖掘算法研究
  • ISSN号:1008-1739
  • 期刊名称:计算机与网络
  • 时间:0
  • 页码:1803-1807
  • 语言:中文
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国民航大学计算机科学与技术学院,天津300300, [2]南开大学信息技术科学学院,天津300071
  • 相关基金:民航联合研究基金项目(60672174 60776806)
  • 相关项目:自适应高效数据挖掘方法研究及其在飞行品质监控中的应用
中文摘要:

准确率和解释性是模糊关联分类模型的两个相互制约的优化目标.目前已有的研究方法中,有的只考虑了分类模型的准确率,有的把模型两个目标转化为单目标问题求解,在模型解释性目标上的优化策略较简单.为此提出一种基于Apriori和NSGA-II多目标进化算法的模糊关联分类模型(MOEA-FACM),采用基于概率独立性的模糊确认指标筛选生成高质量的模糊关联规则集,以Pittsburgh式的编码方式构建准确率和解释性折中的模糊关联分类模型.标准数据集上的实验表明,该方法所建模型分类准确率比同类模型高,分类模型具有较好的泛化能力,而其所含模糊关联规则的数目和规则前件总的模糊项的个数却较少,模型的解释性较好.

英文摘要:

Accuracy and interpretability are fuzzy associative classification model's optimization objective,which complement and restrict each other.So far informed research only takes classification model's accuracy into account,or transforms two-objective into single-objective optimization problem.Interpretability's optimization method is too simple.In the research field of classification model based on multi-objective optimization and fuzzy rule,most of them generate fuzzy rule according to sample dataset's quantitative attribute corresponding fuzzy item's permutation and combination.When there are many quantitative attribute in the dataset,evolutionary exploration space is large.So a fuzzy associative classification model based on variant apriori and multi-objective evolutionary algorithm NSGA-II(MOEA-FACM) is proposed.MOEA-FACM adopts fuzzy confirmation measure based on probabilistic dependence to assess fuzzy associative rule in order to generate good quality rule set.Then a small number of fuzzy associative rules are selected from the prescreened candidate rule set using NSGA-II.Maximization of the classification accuracy,minimization of the number of selected rules,and minimization of the total fuzzy items in antecedent of associative rule are regarded as optimization objectives.According to Pittsburgh coding approach and biased mutation operator,a number of non-dominated rule sets,and fuzzy associative classification model,with respect to these three objectives,are built,which can obtain interpretability-accuracy tradeoff.Experiment results on benchmark data sets show that compared with homogeneous classification model,the proposed model has high accuracy,better generalization ability and less number of fuzzy associative rules and total fuzzy items,and better interpretability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机与网络》
  • 主管单位:中国电子科技集团公司
  • 主办单位:中国电子科技集团公司第五十四研究所
  • 主编:殷云志
  • 地址:石家庄市174信箱215分箱
  • 邮编:050002
  • 邮箱:compnetbjb@163.com
  • 电话:0311-86924204
  • 国际标准刊号:ISSN:1008-1739
  • 国内统一刊号:ISSN:13-1223/TN
  • 邮发代号:18-210
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:2990