位置:成果数据库 > 期刊 > 期刊详情页
Efficacy of insect-resistance Bt/CpTI transgenes in Fs-F7 generations of rice crop-weed hybrid progeny: implications for assessing ecological impact of transgene flow
  • ISSN号:0253-9772
  • 期刊名称:《遗传》
  • 时间:0
  • 分类:S511[农业科学—作物学] S512.1[农业科学—作物学]
  • 作者机构:[1]Ministry of Education, Key Laboratory for Biodiversity Scienceand Ecological Engineering, Department of Ecology andEvolutionary Biology, Fudan University, Shanghai 200433,China, [2]Fujian Provincial Key Laboratory of Genetic Engineering forAgriculture, Fujian Academy of Agricultural Sciences, Fuzhou350003, China
  • 相关基金:Acknowledgements This work was supported by the the National Basic Research Program of China (2011CB100401), the National Natural Science Foundation of China (31330014, 31271683), and National Program of Development of Transgenic New Species of China (2013ZX08011-006). Dr. B. E. Valverde edited the English language and provided constructive comments of the manuscript.
中文摘要:

Ecological impact of transgene flow into populations of wild/weedy relatives is associated with fitness effects in hybrid progeny. Most studies assessing fitness effects focus essentially on early-generation hybrid progeny. However, whether the transgenes remain effective and durable in advanced generations of hybrid progeny remains unclear. We conducted a common garden experiment with F5–F7hybrid progeny derived from crosses between insect-resistant transgenic(Bt/Cp TI) rice and weedy rice, to examine their insect resistance and fitness effects of transgenes on progeny. Hybrid progeny were grown under different insect pressures and cultivation modes where insect damage and fitness-related traits were measured in the same growth season. Plants with transgenes showed significantly lower insect damage(10 % vs.32 %) and higher fecundity(551 vs. 392 seeds/plant) than those without transgenes in F5–F7populations, suggesting the efficacy of transgenes for insect resistance. Fitness benefits of the transgenes were similar among the F5–F7populations, indicating the stability of transgenic effects. A positive correlation between insect index and fecundity change was detected, stressing the important role of ambient insect pressures in assessing fitness effects caused by insect-resistance transgenes. Our results have importantimplications for assessing ecological impacts caused by transgene flow to wild/weedy relatives. For cost-effectiveness, the experimental estimation of fitness effects is probably sufficient based on data from hybrids in early generations. Given that fitness effects of insect-resistance transgenes are associated with ambient insect pressure,ecological risk assessment on transgene flow should consider this variable in experimental design, reasonably reflecting actual situations in wild/weedy populations.

英文摘要:

Ecological impact of transgene flow into pop- ulations of wild/weedy relatives is associated with fitness effects in hybrid progeny. Most studies assessing fitness effects focus essentially on early-generation hybrid progeny. However, whether the transgenes remain effective and durable in advanced generations of hybrid progeny remains unclear. We conducted a common garden experi- ment with Fs-F7 hybrid progeny derived from crosses between insect-resistant transgenic (Bt/CpTI) rice and weedy rice, to examine their insect resistance and fitness effects of transgenes on progeny. Hybrid progeny were grown under different insect pressures and cultivation modes where insect damage and fitness-related traits were measured in the same growth season. Plants with transgenes showed significantly lower insect damage (10 % vs. 32 %) and higher fecundity (551 vs. 392 seeds/plant) than those without transgenes in the efficacy of transgenes Fs-F7 populations, suggesting for insect resistance. Fitness benefits of the transgenes were similar among the Fs-F7 populations, indicating the stability of transgenic effects. A positive correlation between insect index and fecundity change was detected, stressing the important role of ambient insect pressures in assessing fitness effects caused by insect-resistance transgenes. Our results have important implications for assessing ecological impacts caused by transgene flow to wild/weedy relatives. For cost-effec- tiveness, the experimental estimation of fitness effects is probably sufficient based on data from hybrids in early generations. Given that fitness effects of insect-resistance transgenes are associated with ambient insect pressure, ecological risk assessment on transgene flow should consider this variable in experimental design, reasonably reflecting actual situations in wild/weedy populations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《遗传》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国遗传学会
  • 主编:张永清
  • 地址:北京朝阳区北辰西路1号院中国科学院遗传发育所
  • 邮编:100101
  • 邮箱:yczz@genetics.ac.cn
  • 电话:010-64807669
  • 国际标准刊号:ISSN:0253-9772
  • 国内统一刊号:ISSN:11-1913/R
  • 邮发代号:2-810
  • 获奖情况:
  • 中国自然科学核心期刊,《CAJ-CD》执行优秀奖,2008年12月获“中国精品科技期刊”证书和北京市印...
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国生物医学检索系统,美国生物科学数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23270