证明了Ricci曲率平方渐近非负的黎曼流形上的体积比较定理和Poincare不等式,从Poincare不等式可以得到,p-Laplacian算子关于Dirichlet边界问题的第一特征值估计。
In this paper, we prove the volume comparison theorem and the Poincare inequality on Riemannian manifolds with quadratically asymptotically nonnegative Ricci curvature. As applications, we obtain the estimate about the first eigenvalue of p-Laplacian operator satisfying Dirichlet boundary condition.