In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions are proposed in the enlarged space containing both the state and its time difference which allow extra degree of freedom and lead to less conservative estimation of the domain of attraction. Furthermore, based on this result, a useful lemma and an iterative LMI-based optimization algorithm are also developed to maximize an estimation of domain of attraction. A numerical example illustrates the effectiveness of the proposed methods.
In this paper, stability of discrete-time linear systems subject to actuator saturation is analyzed by combining the saturation-dependent Lyapunov function method with Finsler’s lemma. New stability test conditions are proposed in the enlarged space containing both the state and its time difference which allow extra degree of freedom and lead to less conservative estimation of the domain of attraction. Furthermore, based on this result, a useful lemma and an iterative LMI-based optimization algorithm are also developed to maximize an estimation of domain of attraction. A numerical example illustrates the effectiveness of the proposed methods.