利用初等方法及解析方法研究了级数+∞1∑n-11/(na2(n))s的计算问题,证明了恒等式+∞∑n=11/naksk(n))sζ2(ks)/ζ(2ks)×∏p(1+1/1+pks)×…∏p(1+1/k-2+pks)其中ak(n)为n的k次补数,s为实部大于等于1的复数。
The elementary method and the analytic method are used to calculate the series+∞+∞1 1∑n=1 (na 2 (n))s .The indentity ∑n=1 (na k (n))s = ζ2 (ks )ζ(2ks ) × ∏p 1 +( 1 1 + p ks ) × … × 1∏1 +p ( k - 2 + p ks ) is obtained,where ak (n)is the k-th power complement of any positive integer n,s is a complex number with Re(s)≥ 1.