位置:成果数据库 > 期刊 > 期刊详情页
一种面向网络行为因果关联的攻击检测方法
  • ISSN号:0253-987X
  • 期刊名称:《西安交通大学学报》
  • 时间:0
  • 分类:TP309[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学电子与信息工程学院,西安710049, [2]西安交通大学智能网络与网络安全教育部重点实验室,西安710049, [3]陕西省天地网技术重点实验室,西安710049
  • 相关基金:国家自然科学基金资助项目(60633020,60473136,60373105);国家高技术研究发展计划资助项目(2006BAH02A24-2,2006BAK11B02,2007AA012475);国家“二四二”信息安全计划资助项目(2006C26).
中文摘要:

为了能在攻击目标受损之前检测到攻击事件,提出了面向网络行为因果关联的攻击检测方法.该方法基于SNMP管理信息库数据,根据攻击目标的异常行为,首先利用Granger因果关联检验(GCT)从检测变量中挖掘出与异常变量存在整体行为关联的基本攻击变量,然后针对异常行为特征再次利用GCT从基本攻击变量中挖掘出与异常变量存在局部行为关联的攻击变量,最后根据攻击变量和异常变量之间的因果关系,构建面向攻击方检测的攻击关联规则.在Trin00 UDP Flood检测实验中,所提方法成功挖掘出攻击变量udpOutDatagram,取得了满意的检测效果.实验结果表明,该方法能够在攻击方检测到攻击事件,为及时阻止攻击过程向攻击目标进一步扩散提供预警.

英文摘要:

An SNMP MIB oriented approach based on causality in network behavior is presented in order to detect attack before the security of target is damaged. According to the behavior of an abnormal variable in target, Granger causality test (GCT) is used to find preliminary attacking variables which are causality relevant to the abnormal variable in whole network behavior. Depending on the behavior features hidden in the abnormal behavior, GCT is used again to recognize attacking variables which are causality relevant to the abnormal variable in local network behavior. The causality between attacking variables and the abnormal variable is then used to construct detecting rules, which are oriented to attacker, udpOutDatagrams acting as attacking variable are recognized successfully and detection results are acquired well in the test of Trin00 UDP Flood. The experiment results show that the approach can effectively detect attacks from attackers, which has effect on blocking the pervasion of attacking procedure to target.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人共和国教育部
  • 主办单位:西安交通大学
  • 主编:陶文铨
  • 地址:西安市咸宁西路28号
  • 邮编:710049
  • 邮箱:xuebao@mail.xjtu.edu.cn
  • 电话:029-82668337 82667978
  • 国际标准刊号:ISSN:0253-987X
  • 国内统一刊号:ISSN:61-1069/T
  • 邮发代号:52-53
  • 获奖情况:
  • 美国《工程索引》(EI光盘版)定期收录的中文期刊,《中文核心期刊目录总览》综合类核心期刊,科技部《科技论文统计与分析》统计源,《中国科学引文数据库》刊源,获全国高校优秀科技期刊一等奖,“百种中国杰出学术期刊”称号,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27275