位置:成果数据库 > 期刊 > 期刊详情页
一种云环境下的大数据Top—K查询方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国人民大学信息学院,北京100872
  • 相关基金:国家自然科学基金(61379050,91224008);国家高技术研究发展计划(863)(2013AA013204);高等学校博士学科点专项科研基金(20130004130001)
中文摘要:

Top-K查询在搜索引擎、电子商务等领域有着广泛的应用.Top-K查询从海量数据中返回最符合用户需求的前K个结果,主要目的是消除信息过载带来的负面影响.大数据背景下的Top-K查询,给数据管理和分析等方面带来新的挑战.结合MapReduce的特点,从数据划分、数据筛选等方面对云环境下的大数据Top-K查询问题进行深入研究.实验结果表明,该方法具有良好的性能和扩展性.

英文摘要:

Top-K query has been widely used in lots of modern applications such as search engine and e-commerce. Top-K query returns the most relative results for user from massive data, and its main purpose is to eliminate the negative effect of information overload. Top-K query on big data has brought new challenges to data management and analysis. In light of features of MapReduce, this paper presents an in-depth study of Top-K query on big data from the perspective of data partitioning and data filtering. Experimental results show that the proposed approaches have better performance and scalability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609