在一对上-下解和下-上解存在的条件下,研究了一类二阶耦合积分边值问题 {-x″=f1(t,x,y,x′),-y″=f2(t,x,y,y′),t∈[0,1],x(0)=y(0)=0,x(1)+∫01y(t)dA(t)=0,y(1)+∫01x(t)dB(t)=0 解的存在性,其中f1,f2∈ C([0,1]× R3,R).
In this paper, we consider the following second-order couple integral boundary value problem {-x″=f1(t,x,y,x′),-y″=f2(t,x,y,y′),t∈[0,1],x(0)=y(0)=0,x(1)+∫01y(t)dA(t)=0,y(1)+∫01x(t)dB(t)=0 where f1, f2∈ C([0, 1]× R3,R). We give conditions on f1, f2 and a pairs of lower-super solution and upper-lower solution to ensure the existence of solutions of the given problem.