位置:成果数据库 > 期刊 > 期刊详情页
基于分数阶微分预处理高光谱数据的荒漠土壤有机碳含量估算
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] S127[农业科学—农业基础科学]
  • 作者机构:[1]新疆大学资源与环境科学学院,乌鲁木齐830046, [2]新疆大学绿洲生态教育部重点实验室,乌鲁木齐830046
  • 相关基金:国家自然科学基金(41130531、U1503302、41561089); 国家科技支撑计划项目(2014BAC15B01)
中文摘要:

对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通过显著性检验波段的数量均呈现先增后减的趋势,但波段数量最多的对应阶数并不统一;3)对数变换的1.6阶微分所建立的模型为最优模型,该模型的RMSEC=2.433 g/kg,R2c=0.786,RMSEP=2.263 g/kg,R2p=0.825,RPD=2.392。说明了分数阶预处理过后的模型精度和稳健性较整数阶微分有了大幅提升,并且运用在高光谱反演土壤有机碳含量上是可行的。

英文摘要:

Soil organic carbon(SOC) is a crucial soil property which has attracted wide attention in the field of global change. This is especially true in the arid and semi-arid regions. In recent years, it is a hot topic to estimate SOC content by hyperspectral remote sensing technology, however, it is hard to estimate SOC content in desert area precisely when it is less than 2%. Existing work, including related research history and current status, has mostly focused on integer differential, which yet might influence the effective information detection and cause the loss of spectral information to some extent. Therefore, this study aimed to bring fractional order differential algorithm into the preprocessing of hyperspectral data. With 103 surface soil samples collected from the Ebinur Lake basin in Xinjiang Uighur Autonomous Region, China, the SOC contents and reflectance spectra were measured in the laboratory. After removing the marginal bands(350-400 and 2401-2500 nm) and smoothed by Savitzky-Golay filter, the raw hyperspectral reflectance(R) data were transformed by 4 mathematical methods, i.e., the reciprocal, logarithm, logarithm-reciprocal and root mean square method, respectively. Secondly, their 0-2 order differentials(taking 0.2-order as step) were calculated by Grünwald-Letnikov fractional differential equation. And then, we computed the correlation coefficients between each fractional order differential value of R, its 4 mathematical transformation forms and SOC content. After choosing the feature bands whose correlation coefficient passed the significance test at 0.01 level, 103 samples were divided into 2 parts: 69 for model calibration and 34 for validation. Subsequently, partial least squares regression(PLSR) was employed to build the hyperspectral estimation models of SOC content. And then, root mean square error of calibration(RMSEC), determination coefficient of calibration(R2c), root mean square error of prediction(RMSEP), determination coefficient of predicting(R2

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231