位置:成果数据库 > 期刊 > 期刊详情页
均值——下偏距(M-LPM)组合优化下的两基金分离定理
  • ISSN号:1672-884X
  • 期刊名称:《管理学报》
  • 时间:0
  • 分类:F830.59[经济管理—金融学]
  • 作者机构:[1]天津大学管理学院,天津300072, [2]天津财经大学,天津300222
  • 相关基金:国家自然科学基金资助支持(70601021)
中文摘要:

通常的投资建议和两基金分离定理之间存在较大差异,这就是著名的Canner难题。厚尾分布以及投资者对风险的厌恶水平对真实的投资组合行为有显著的影响,在考虑下侧风险的情况下,本文关注投资者如何选择投资组合、两基金分离定理在什么情况下能够成立、以及对投资者的投资策略的选择的影响如何。当目标等于无风险利率时,有文献表明两基金分离定理可以在均值——下偏距(M-LPM)中得到证明。然而,除了以无风险利率为目标外,哪些其它的目标也可以使分离定理成立的问题已经出现。本文尝试回答这个问题,并对投资建议和两基金分离定理的差异给出了合理的解释。

英文摘要:

The advice of investment is apparently inconsistent with the separation theorem, which is called Canner puzzle. Fat tail and risk preference of investors have a remarkable effect on the investment behavior. Taking into account the downside risk, the paper wants to know how to choose investment portfolio and how two-fund separation theorem can hold and its effect on investment strategy. As measures of portfolio risk, lower partial moments (LPM) have several advantages over variance, the traditional measure of risk. A separation theorem can be proven in the context of mean-LPM portfolio optimization, when the target is equal to the risk-free interest rate. The paper tries to find out which targets admit separation. The rational explications of the diversities between the popular investment advice and the separation theorem are given.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《管理学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:张金隆
  • 地址:武汉洪山区珞喻路1037号华中科技大学管理学院601室
  • 邮编:430074
  • 邮箱:glxb@foxmail.com
  • 电话:027-87542154
  • 国际标准刊号:ISSN:1672-884X
  • 国内统一刊号:ISSN:42-1725/C
  • 邮发代号:38-312
  • 获奖情况:
  • 国家自然科学基金委员会管理科学部重要期刊,第六,七,八届湖北省优秀期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库
  • 被引量:16410