设{Xn,n≥1)是独立同分布随机变量序列,EX1=0,EX^21=1.设Sn=n∑i=1Xi,TnTn(X1,…Xn)是随机函数且Tn=Sn+Rn.本文证明在E|Rn|^2vr〈∞或E|Rn|<∞,对随机函数Tn成立着Baum—Katz强大数律和重对数律的精确极限性质的一般结果.由此作为推论,对U-统计量,Von—Mises统计量,线性过程,移动平均过程。线性模型中误差方差估计和功率和等在适当矩条件下均可写出Baum—Katz强大数律和重对数律的精确极限性质.
Let {Xn,-∞〈 n 〈 ∞} be a sequence of independent identically distributed oo random variables with EX1 = 0, EX^21 = 1 and let Sn=EX^21=1.设Sn=n∑i=1Xi,TnTn(X1,…Xn) be a statistic (or random functions) such that: Tn = Sn + Rn. This paper gives an universal result in precise asymptotic of the Baum-Katz laws of large numbers and the law of iterated logarithms for Tn under some moment condition, such as E|Rn|2vr 〈 ∞ or E|Rn|] 〈 ∞. As a consequence, it can be shown that the precise asymptotic of the LLN and LIL hold for Ustatistics, Von-Mises statistics, linear processes, moving average processes, error variance estimates in linear models and power sums etc.