位置:成果数据库 > 期刊 > 期刊详情页
自然场景图像与合成图像的快速分类
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨理工大学自动化学院,哈尔滨150080, [2]中国科学院自动化研究所模式识别国家重点实验室,北京100190
  • 相关基金:国家自然科学基金项目(61411136002)
中文摘要:

目的随着现代通信和传感技术的快速发展,互联网上多媒体数据日益增长,既为人们生活提供了便利,又给信息有效利用提出了挑战。为充分挖掘网络图像中蕴含的丰富信息,同时考虑到网络中图像类型的多样性,以及不同类型的图像需要不同的处理方法,本文针对当今互联网中两种主要的图像类型:自然场景图像与合成图像,设计层次化的快速分类算法。方法该算法包括两层,第1层利用两类图像在颜色,饱和度以及边缘对比度上表现出来的差异性提取全局特征,并结合支持向量机(SVM)进行初步分类,第1层分类结果中低置信度的图像会被送到第2层中。在第2层中,系统基于词袋模型(bag-of-words)对图像不同类型的局部区域的纹理信息进行编码得到局部特征并结合第2个SVM分类器完成最终分类。针对层次化分类框架,文中还提出两种策略对两个分类器进行融合。分别为分类器结果融合与全局+局部特征融合。为测试算法的实用性,同时收集并发布了一个包含超过30000幅图像的数据库。结果本文设计的全局与局部特征对两类图像具有较强的判别性。在单核Intel Xeon(R)(2.50GHz)CPU上,分类精度可达到98.26%,分类速度超过40帧/s。另外通过与基于卷积神经网络的方法进行对比实验可发现,本文提出的算法在性能上与浅层网络相当,但消耗更少的计算资源。结论本文基于自然场景图像与合成图像在颜色、饱和度、边缘对比度以及局部纹理上的差异,设计并提取快速有效的全局与局部特征,并结合层次化的分类框架,完成对两类图像的快速分类任务,该算法兼顾分类精度与分类速度,可应用于对实时性要求较高的图像检索与数据信息挖掘等实际项目中。

英文摘要:

Objective The rapid development of the Internet, smartphones, sensing, and communication technology, have resulted in the rapid increase of multimedia data on the Internet, such as texts, images, and videos, which provide rich information and great convenience to our life. By contrast, it becomes increasingly difficult to exploit the information embedded in the heterogeneous data. To effectively extract the contents embedded in web images, classifying the images into different types is beneficial so that the contents can be fed to different procedures for detailed analysis. In this paper, a hierarchical algorithm is proposed for the fast genre classification of natural scene images and born-digital images, which are the most prevalent image types on the Web. Method Our algorithm consists of two stages ; the first stage extracts certain global features, such as coherence of highly saturated pixels, average contrast of edge pixels, and color histogram. All feature measures are designed based on distinct differences between natural scene images and born-digital images. Specifically, the coherence of highly saturated pixels focuses on measuring different patterns of color transitions from pixel to pixel appearing in the two types of images. Natural scene images often depict objects of the real world, and neither regions of constant color nor coherent pixels of highly saturated are common in this type of image because of the natural texture of objects, noise, and diversity of illumination conditions. By contrast, born-digital images tend to have larger regions of constant color and more blocks consisting of highly saturated pixels. The second measure describes the edge contrast. Typically, edges in born-digital images occur between regions of constant color and the transitions are verysteep, while their counterparts in natural scene images often correspond to boundaries between objects of the real world and are much smoother for light variations and shading. We introduce color histogram as the third global measure c

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0