对赋Luxemburg范数的Orlicz序列空间和Cesaro空间(这里cesp,(1〈p〈∞))的系数R(X)进行了计算,给出了具有R(X)〈2性质的非自反Banach空间X的例子.指明了弱近一致光滑性质强于不等式R(X)〈2.
The coefficient R (X) is calculated for Orlicz sequence spaces equipped with the Luxemburg norm and for Cesaro spaces cesp ( 1 〈 p 〈 ∞ ). An example of nonreflexive Banach space X with R (X) 〈 2 is given. It shows that property weak nearly uniformly smooth (WNUS) is essentially stronger than the inequality R(X) 〈 2.