位置:成果数据库 > 期刊 > 期刊详情页
一种基于聚类的GRBF网络机械缺陷识别方法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安科技大学通信学院,陕西西安710054
  • 相关基金:国家自然科学基金资助项目(51074121); 陕西省教育厅科学研究计划(2010JK659)
作者: 刘涛[1]
中文摘要:

针对煤矿机械缺陷超声信号的非平稳特性,利用小波包和基于聚类的广义RBF神经网络进行缺陷的智能识别.重点研究了利用小波包方法提取反映不同缺陷性质的特征值和GRBF神经网络分类方法.并以机械焊接缺陷为研究对象,进行了实验研究.结果表明该方法与其他方法相比,具有较高的缺陷分类准确率.

英文摘要:

According to the nonstationarity of mining machinery flaw signals in ultrasonic testing,the method used for defect identification based on WPT and Clustering Algorithm optimized GRBF.Focus on WPT extract the different defects characteristics and GRBF Algorithm classify the different flaws.Experimental study the mining machinery Welding flaws.Compared with the BP,experimental results shows that this algorithm has high accuracy of flaw classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909