To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the transformer’s leakage inductance and the rectifier diodes’ junction capacitances. The other reason is that the fast reverse recovery current of the rectifier diodes flows through the transformer’s leakage inductance. An H bridge composed of four diodes,an auxiliary inductance, and a clamping winding were adopted in the proposed converter,and peak voltage was suppressed by varying the equivalent inductance, principally in different operating modes. Experimental results demonstrate that the peak voltage of rectifier diodes decreases by 43%,the auxiliary circuit does not lead to additional loss, and the rising rate, resonant frequency,and amplitude of the rectifier diodes’ voltage decrease.Peak voltage and electromagnetic interference( EMI) of rectifier diodes are suppressed.
To suppress peak voltage on rectifier diodes in a full bridge( FB) converter,the mechanism of peak voltage was analyzed and an improved FB converter was proposed. One reason for peak voltage is the resonance of the transformer's leakage inductance and the rectifier diodes' junction capacitances. The other reason is that the fast reverse recovery current of the rectifier diodes flows through the transformer's leakage inductance. An H bridge composed of four diodes,an auxiliary inductance, and a clamping winding were adopted in the proposed converter,and peak voltage was suppressed by varying the equivalent inductance, principally in different operating modes. Experimental results demonstrate that the peak voltage of rectifier diodes decreases by 43%,the auxiliary circuit does not lead to additional loss, and the rising rate, resonant frequency,and amplitude of the rectifier diodes' voltage decrease.Peak voltage and electromagnetic interference( EMI) of rectifier diodes are suppressed.