位置:成果数据库 > 期刊 > 期刊详情页
基于示例语义的音乐检索模型
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]大连理工大学计算机科学与技术学院,辽宁大连116024, [2]大连大学信息工程与技术学院,辽宁大连116622
  • 相关基金:国家自然科学基金资助项目(61632011,61562080,61602079)
中文摘要:

基于语义描述的音乐检索是根据音乐所表达的语义和对音乐的主观感受,查找或发现音乐的一种方式。一个典型的基于语义描述的检索(query by semantic description,QBSD)系统被定义为有监督的多类别标记(supervised multi-class labeling,SML)模型,通过使用语义相关标签来标记未知,将音乐映射到一个"语义空间",从而克服语义鸿沟问题。在SML模型基础上,提出将示例音乐作为检索条件,通过对音乐语义的标注将检索示例映射到语义空间,然后在标记后的数据库中,返回语义相似的音乐。并且采用深度学习算法,设计了多类别标记模型。实验表明该模型能够满足用户基于语义音乐检索的基本需要。

英文摘要:

Query by semantic description(QBSD)is a natural way to retrieve and discovery relevant music based on semantic contents and users’subjective feelings.A QBSD system can be defined as a supervised multi-class labeling bridging(SML)model semantic for the semantic gaps,by which a song could be tagged using semantic labels on and mapped into spaces.song In this paper,we propose a method could for be querying used by semantic description retrieved based the SML model,in which The a represented song as a semantic most vector as a query,and within the tagged network music dataset.resulted into list contains similar songs show in that the semantic space.A convolutional could neural is of also integrated the SML model.space The experiments the proposed method obtain relevant pieces music in the same semantic effectively and efficiently.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243