位置:成果数据库 > 期刊 > 期刊详情页
一种有效的挖掘数据流近似频繁项算法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:0
  • 页码:1080-1087
  • 语言:中文
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001, [2]黑龙江大学计算机科学与技术学院,黑龙江哈尔滨150080
  • 相关基金:Supported by the Key Program of the National Natural Science Foundation of China under Grant No.60533110 (国家自然科学基金重点项目); the National Natural Science Foundation of China under Grant No.60473075 (国家自然科学基金), the Key Program of Natural Science Foundation of Heilongjiang Province of China under Grant No.zig03-05 (黑龙江省自然科学基金); the Program for New Century Excellent Talents in University of China under Grant No.NCET-05-0333 (新世纪优秀人才支持计划)
  • 相关项目:传感器网络系统基础软件及数据管理关键技术研究
中文摘要:

数据流频繁项是指在数据流中出现频率超出指定阈值的数据项.查找数据流频繁项在网络故障监测、流数据分析以及流数据挖掘等多个领域有着广泛的应用.在数据流模型下,算法只能一遍扫描数据,并且可用的存储空间远远小于数据流的规模,因此,挖掘出所有准确的数据流频繁项通常是不可能的.提出一种新的挖掘数据流近似频繁项的算法.该算法的空间复杂性为O(ε^-1),每个数据项的平均处理时间为D(1),输出结果的频率误差界限为ε(1-s+ε)N,在目前已有的同类算法中均为最优。

英文摘要:

A frequent item of a data stream is a data point whose occurrence frequency is above a given threshold. Finding frequent item of data stream has wide applications in various fields, such as network traffic monitor, data stream OLAP and data stream mining, etc. In data stream model, the algorithm can only scan the data in one pass and the available memory space is very limited relative to the volume of a data stream, therefore it is usually unable to find all the accurate frequent items of a data stream. This paper proposes a novel algorithm to find e-approximate frequent items of a data stream, its space complexity is O(ε^-1) and the processing time for each item is O(1) in average. Moreover, the frequency error bound of the results returned by the proposed algorithm is ε(1-s+ε)N. Among all the existed approaches, this method is the best.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609