位置:成果数据库 > 期刊 > 期刊详情页
基于混沌理论和自适应惯性权重的PSO算法优化
  • ISSN号:1671-5489
  • 期刊名称:《吉林大学学报:理学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]宁波工程学院电子与信息工程学院,浙江宁波315016
  • 相关基金:国家自然科学基金(批准号:61502256); 浙江省自然科学基金(批准号:LY15F020011)
作者: 安鹏[1]
中文摘要:

针对粒子群算法固定惯性权重和早熟收敛的缺陷,提出一种动态自适应惯性权重调整策略,有效增强了算法的全局和局部寻优能力;并针对早熟问题,采用混沌映射方法增加种群多样性,同时利用负梯度方向调整群体极值,极大降低了算法陷入局部极值的概率.通过在多个常用测试函数上与其他算法比较,证明了所提改进粒子群算法的正确性和有效性.

英文摘要:

In view of both fixed inertia weight and premature convergence obvious flaws of particle swarm optimization(PSO)algorithm,a dynamic adaptive adjustment strategy for inertia weight was proposed on the basis of a detailed analysis of the relationship among the inertia weight,population size,particle fitness and search space dimension,which effectively enhances the global and local optimization abilities of the algorithm.For the problem of premature,the chaotic mapping method was used to increase the diversity of the population,while the group extreme was adjusted in the direction of negative gradient,which greatly reduces the probability of fall into the local extreme.The correctness and effectiveness of the proposed PSO algorithm were verified to improve by some common used test functions compared with those by other algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《吉林大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:吉林大学
  • 主编:裘式纶
  • 地址:长春市南湖大路5372号
  • 邮编:130012
  • 邮箱:sejuj@mail.jlu.edu.cn
  • 电话:0431-88499428
  • 国际标准刊号:ISSN:1671-5489
  • 国内统一刊号:ISSN:22-1340/O
  • 邮发代号:12-19
  • 获奖情况:
  • 在吉林省、教育部及全国优秀科技期刊评比中共获奖1...,2008年被评为"中国精品科技期刊", 并获教育部"第...,2009年获全国高校科技期刊优秀编辑质量奖,并被吉...,2008年和2009年连续两次获"中国科技论文在线优秀期...,2010年获教育部"第三届中国高校优秀科技期刊"奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6314