位置:成果数据库 > 期刊 > 期刊详情页
基于句法结构分析的中文问题分类
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学信息检索研究室,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金资助项目(60435020)
中文摘要:

问题分类是问答系统中重要的组成部分,问题分类结果的好坏直接影响问答系统的质量。本文提出了一种用于问题分类的特征提取的新方法,该方法主要使用句法分析的结果,提取问题的主干和疑问词及其附属成分作为分类的特征,此方法大幅度地减少了噪音,突出了问题分类的主要特征,利用贝叶斯分类器分类,有效地提高了问题分类的精度。实验结果证明了该方法的有效性,大类和小类的分类精度分别达到了86.62%和71.92%,取得了较好的效果。

英文摘要:

Qnestion classification is very important for question answering, and the result of question classification directly affects the quality of question answering. This paper presents a new method on feature extraction for question classification. The output of syntactic parsing is used in this method to extract the Subject-Predieate structure as well as interrogative words and their adjunctive parts as features for elassifieation, leading to substantial roduetion in noise, and emphasis on the main features of question claasification. A bayesian claasifier is used in classification, which effectively increases the precision of question claasifieation. The experimental result validates the effeetiveness of this method: the classifieation precision of coarse classes and fine elasses reach 86.62% and 71.92% respectively, which attains the expected effects.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136