探索了一种基于近红外光谱法实现的硅钢表面绝缘涂层厚度检测方法。该方法采用声光可调滤波器近红外光谱仪采集硅钢表面绝缘涂层的近红外光谱,为进一步提取近红外光谱数据的有效信息,采用离散粒子群优化(discretebinary particle swarm optimization,DBPSO)算法对近红外光谱数据进行最佳波长变量筛选,并用筛选得到的新的光谱数据建立涂层厚度的Boosting-核偏最小二乘(kernel partial least squares,KPLS)定量分析模型。对比实验结果显示,Boosting-KPLS算法可以提高定量分析模型的分析准确度和速度,是一种较KPLS更为稳健、分析准确度更高的近红外光谱分析方法。文中所建定量分析模型对30个检验样本分析的绝对误差最小值为-0.02μm,最大值为0.19μm,最大相对误差为14.23%,完全符合实际检验的需要。
探索了一种基于近红外光谱法实现的硅钢表面绝缘涂层厚度检测方法。该方法采用声光可调滤波器近红外光谱仪采集硅钢表面绝缘涂层的近红外光谱,为进一步提取近红外光谱数据的有效信息,采用离散粒子群优化(discretebinary particle swarm optimization,DBPSO)算法对近红外光谱数据进行最佳波长变量筛选,并用筛选得到的新的光谱数据建立涂层厚度的Boosting-核偏最小二乘(kernel partial least squares,KPLS)定量分析模型。对比实验结果显示,Boosting-KPLS算法可以提高定量分析模型的分析准确度和速度,是一种较KPLS更为稳健、分析准确度更高的近红外光谱分析方法。文中所建定量分析模型对30个检验样本分析的绝对误差最小值为-0.02μm,最大值为0.19μm,最大相对误差为14.23%,完全符合实际检验的需要。