位置:成果数据库 > 期刊 > 期刊详情页
Effect of Cr/In-doping on the crystalline quality of bulk ZnTe crystals grown from Te solution by temperature gradient solution growth (TGSG) method
  • ISSN号:1674-4926
  • 期刊名称:《半导体学报:英文版》
  • 时间:0
  • 分类:TN304.25[电子电信—物理电子学] TM912[电气工程—电力电子与电力传动]
  • 作者机构:[1]State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern PolytechnicalUniversity, Xi'an 710072, China
  • 相关基金:Project supported by the National Basic Research Program of China (No. 2011CB610406), the National Natural Science Foundation of China (No. 51372205), the 111 Project of China (No. B08040), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20116102120014), and the NWPU Foundation for Fundamental Research and the Research Fund of the State Key Laboratory of Solidification Processing (NWPU).
中文摘要:

The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic absorption bands, centered at about 1750 nm and beneath the fundamental absorption edge. However,the fundamental reflectance spectra are not sensitive to the dopants. The resistivity of undoped, Cr-doped, and In-doped ZnTe is about 102Ω·cm, 103Ω·cm, and 108Ω·cm, respectively. Only In-doped ZnTe has an IR transmittance higher than 60% in the range of 500 to 4000 cm-1. However, the IR transmittance of Cr-doped ZnTe is very low and decreases greatly as the wavenumber increases, which is mainly attributed to the scattering effects caused by some defects generated by Cr-doping.

英文摘要:

The properties of undoped, Cr-doped, and In-doped bulk ZnTe crystals grown by the TGSG method were compared. Cr/In-doping leads to a slight red-shift of the absorption edge. Cr-doping also creates two characteristic absorption bands, centered at about 1750 nm and beneath the fundamental absorption edge. However, the fundamental reflectance spectra are not sensitive to the dopants. The resistivity of undoped, Cr-doped, and In-doped ZnTe is about 102 Ω.cm, 10^3 Ω.cm, and 10^8 Ω-cm, respectively. Only In-doped ZnTe has an IR transmittance higher than 60% in the range of 500 to 4000 cm-1. However, the IR transmittance of Cr-doped ZnTe is very low and decreases greatly as the wavenumber increases, which is mainly attributed to the scattering effects caused by some defects generated by Cr-doping.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《半导体学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国电子学会 中国科学院半导体研究所
  • 主编:李树深
  • 地址:北京912信箱
  • 邮编:100083
  • 邮箱:cjs@semi.ac.cn
  • 电话:010-82304277
  • 国际标准刊号:ISSN:1674-4926
  • 国内统一刊号:ISSN:11-5781/TN
  • 邮发代号:2-184
  • 获奖情况:
  • 90年获中科院优秀期刊二等奖,92年获国家科委、中共中央宣传部和国家新闻出版署...,97年国家科委、中共中央中宣传部和国家新出版署三等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:7754