令λp,q(G)为图G的L(p,q标)-号数,其中p和q是正整数且p≥q。证明了若G是围长g(G)≥6的平面图,则λp,q(G)≤(2q-1)Δ(G)+4p+6q-5;若G是围长g(G)≥6且Δ(G)≠5的平面图,则λp,q(G)≤(2q-1)Δ(G)+10p-2q-4。这一结果暗含着对于g(G)≥6且Δ(G)≠5的平面图G,Wegner的猜想成立。
Let p and q be two positive integers with p≥q,and let λp,q(G) be the L(p,q)-labeling number of a planar graph G.It is proved that λp,q(G)≤(2q-1)Δ(G)+4p+6q-5 if G is a planar graphs with girth g(G)≥6,and that λp,q(G)≤(2q-1)Δ(G)+10p-2q-4 if G is a planar graphs with girth g(G)≥6 and Δ(G)≠5,which implies that Wegner's conjecture holds for a planar graph G with girth g(G)≥6 and Δ(G)≠5.