利用分数阶复变换技巧,本文将非线性分数阶Klein-Gordon方程转化为非线性常微分方程,然后应用扩展的(G’/G)-展开法构造了非线性分数阶Klein—Gordon方程的精确解,从而得到了一系列新显式解,包括双曲函数解,三角函数解和负幂次解.
By using the fractional complex transformation, the nonlinear fractional Klein-Gordon equation is converted to a nonlinear ordinary differential equation. Then we apply the extended (G1/G)-expansion method to construct the exact solutions of the equation. Moreover, a series new explicit solutions are obtained, which include hyperbolic function, trigonometric and negative exponential solutions.