本文中,我们从—个高阶的方阵谱问题出发得到多向量Kaup-Newell方程的—个可积分解.通过迹恒等式的帮助,得到多向量Kaup-Newell方程族的双哈密顿结构,而且可以发现这个多向量Kaup-Newell方程的时间部分和空间部分的约束流是刘维尔意义下的两个可积哈密顿系统.
Integrable decomposition of the multicomponent Kaup-Newell equation associated with a high-order matrix spectral problem is presented. With the aid of trace identity, its bi-Hamiltonian formulation is generated. The spatial flows and temporal constrained flows of this multicomponent Kaup-Newell equation are two integrable Hamiltonian systems in the sense of Liouville.