位置:成果数据库 > 期刊 > 期刊详情页
结合卡尔曼滤波和Mean Shift的抗遮挡跟踪算法
  • ISSN号:1001-0645
  • 期刊名称:北京理工大学学报
  • 时间:2013.10.15
  • 页码:1056-1061
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京理工大学信息与电子学院,北京100081, [2]北京联合大学信息学院电子工程系,北京100101
  • 相关基金:国家自然科学基金资助项目(61171194);北京联合大学新起点资助项目(ZK10201305)
  • 相关项目:面向实时处理的多传感器数据融合算法与系统集成研究
中文摘要:

针对卡尔曼滤波和Mean Shift算法结合后对严重遮挡和遮挡后复出失效且实时性差的问题,提出一种基于卡尔曼滤波和Mean Shift动态结合的改进算法.通过在算法中加入Bhattacharyya系数进行遮挡程度判断,并根据遮挡系数的阈值选择使用卡尔曼滤波或线性预测法更新Mean Shift迭代起点.实验结果表明,该方法能成功实现大范围连续遮挡和目标复出情况下红外目标的跟踪,并且迭代次数和跟踪时间分别减少了9.68%和17.58%,提高了跟踪的鲁棒性和实时性.

英文摘要:

To solve the problem of significant occlusion and failure when reappearing in combining Kalman filter and Mean Shift, a new improved method which is based on Kalman filter and Mean Shift was proposed. In the algorithm, first, the parameter of Bhattacharyya is used to scale the degree of occlusion, then Kalman filter or linear prediction was chosen to update the searching loop point of Mean Shift according to the Bhattacharyya parameter. The experiment results indicate that the searching and tracking time can be reduced down 9. 68% and 17.58%. A continuous and stable tracking results can be obtained in the situation of significant occlusion and re-appearance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京理工大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:北京理工大学
  • 主编:黄风雷
  • 地址:北京海淀区中关村南大街5号
  • 邮编:100081
  • 邮箱:blgzw@bit.edu.cn
  • 电话:010-68912326 68913988
  • 国际标准刊号:ISSN:1001-0645
  • 国内统一刊号:ISSN:11-2596/T
  • 邮发代号:82-502
  • 获奖情况:
  • 全国优秀高等学校自然科学学报及教育部优秀科技期...,首届国家期刊奖提名奖,中文核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:17163