为了解大间隙、高转速条件下磁力传动系统的能量传递规律,研究行波磁场驱动的大问隙磁力驱动技术:通过微型轴流式血泵外磁场驱动,对大间隙磁力驱动系统各部分能量耗散进行研究,建立系统能量传递效率的数学模型。通过轴流式血泵泵水实验,得到血泵在耦合距离20mm和30mm时的最大能量传递效率,即磁力传动系统的最佳工作点,并通过与理论解析值相比较,得到大间隙磁力驱动系统的能量传递效率的变化趋势,确定磁力驱动系统能量传递效率的主要影响因素,为提高磁力驱动系统的能量传递效率提供了途径和依据。
In order to research the energy transfer law in large gap magnetic drive system under the condition of large gap and high speed, the large gap magnetic drive technology, which was driven by traveling wave magnetic field, was studied. Based on the outside magnetic driving system of axial flow blood pump, the mathematical model of energy loss was established through studying each part of the system. By the driving experiment of blood pump, the maximum energy transfer efficiencies at 20 mm and 30 mm are obtained, which is the optimal operating condition of system. Then change tendency of the energy transfer efficiency and its influential factors are obtained by analysis and experiments, so as to provide methods improving the energy transfer efficiency.