位置:成果数据库 > 期刊 > 期刊详情页
Forward heuristic breadth-first reasoning based on rule match for biomass hybrid soft-sensor modeling in fermentation process
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]Department of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
  • 相关基金:Supported by the National Natural Science Foundation of China (20476007)
中文摘要:

Biomass is a key parameter in fermentation process,directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product.Hybrid soft-sensor modeling is a good method for on-line estimation of biomass.Structure of hybrid soft-sensor model is a key to improve the estimating accuracy.In this paper,a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model.First,strategy of forward heuristic reasoning about facts is introduced,which can reason complex hybrid model structure in the event of few known facts.Second,rule match degree is defined to obtain higher estimating accuracy.The experiment results of Nosiheptide fermentation process show that the hybrid mode1ing process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.

英文摘要:

Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049