位置:成果数据库 > 期刊 > 期刊详情页
一种求解作业车间调度的混合粒子群算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海理工大学管理学院,上海200093
  • 相关基金:高等学校博士点基金资助项目(20093120110008); 上海市重点学科建设项目(S30504)
中文摘要:

针对车间作业调度问题,提出了一种混合了知识进化和粒子群优化的算法。该算法主要是结合知识进化算法的进化选择机制和粒子群优化的局部快速收敛性特性,首先让粒子替代知识进化算法中的进化个体,在群体空间中按粒子群优化规则寻找局部最优,然后根据知识进化算法的全局选择机制寻找全局最优,最后将车间作业调度问题的特点融入到所提出的混合算法中求解问题。采用基准数据进行测试的仿真实验,并比对标准遗传算法,结果表明所提算法的有效性。

英文摘要:

This paper introduced a new hybrid algorithm into solving Job-Shop scheduling problemd,which combined know-ledge evolution algorithm(KEA) and particle swarm optimization(PSO) algorithm.By the mechanism of KEA,fully utilized its global search ability for finding the global solution.By the operating characteristic of PSO,also made the local search ability full use.Through the combination,obtained better convergence property for Job-Shop scheduling with the criterion of minimization the maximum completion time(makespan).Simulation results based on well-known benchmarks and comparisons with standard genetic algorithm demonstrate the feasibility and effectiveness of the proposed hybrid algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049