制作了底栅极顶接触有机薄膜晶体管器件,60 nm的pentacene被用作有源层,120 nm热生长的SiO2作为栅极绝缘层.通过采用不同自组装修饰材料对器件的有源层与栅极绝缘层之间的界面进行修饰,如octadecyltrichlorosilane(OTS),phenyltrimethoxysilane(PhTMS),来比较界面修饰层对器件性能的影响.同时对带有PhTMS修饰层的OTFTs器件低栅极电压调制下的场效应行为及其载流子的传输机理进行研究.结果得到,当|VGS|〈0.1 V时,载流子在如此小的栅极电压调制下已经不能过多在半导体有源层与栅极绝缘层之间的界面处积聚,使OTFTs器件的输出电流保持相对的平衡.但是,器件的调制栅压在-0.001V时,器件仍然有好的输出特性,当VDS为-20 V时,器件的场效应迁移率为3.22×10^-3cm^2/Vs,开关电流比为1.43×10^2,阈值电压为0.66 V.
We have fabricated the top-contact organic thin film transistors (OTFTs) with, a 60 nm thick pentacene films as active layer and a 120 nm thermal growth SiO2 as gate insulator. Through using different self-assembled monolayers , such as octadecyhrichlorosilane (OTS) and phenyhrimethoxysilane (PhTMS), as a buffer between the organic semiconductor active layer and gate insulator, we studied the effect of different buffers on the performance of OTFTs device. At the same time, we also investigated the field-effect behavior and carrier transport mechanism of OTFTs device with PhTMS buffer under low gate modulation voltage. When | VGS | 〈 0.1 V we found that under such low gate modulation voltage the carriers can no more accumulate at the interface between the organic semiconductor active layer and gate insulator, resulting in the output current IDS of OTFTs device keeping balance. But the OTFF device still has good output characteristics, with the field-effect mobility (μET) of 3.22 x 10^-3 cm^2/Vs, (on/off) current ratio of 1.43 × 10^2 , and threshold voltage (VTs) of - 0.66 V.