位置:成果数据库 > 期刊 > 期刊详情页
数字图书馆中兴趣度推荐算法
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]黑龙江大学计算机科学技术学院,黑龙江哈尔滨150080
  • 相关基金:国家自然科学基金资助项目(60773068);黑龙江省自然科学基金资助项目(F200612);黑龙江省教育厅科学技术研究基金资助项目(11511272);黑龙江大学青年科学基金资助项目(OL200523).
作者: 杨艳[1]
中文摘要:

个性化推荐技术能够帮助用户更方便地从大量的文本数据中得到感兴趣的文本.数字图书馆中现有的个性化推荐技术都是根据文本相似性为用户推荐感兴趣的文本.该文提出用户对文本的兴趣度的概念,综合考虑了文本之间的相似性、文本的信息量和新颖性3个因素,比相似性能更好地反映用户的兴趣.同时提出基于兴趣度的个性化推荐算法.理论分析和实验结果均表明,基于兴趣度的推荐算法的推荐完全性和准确性比相似性推荐算法和基于图的混合推荐算法均有显著提高.

英文摘要:

Personalized recommendation techniques can actively provide users with useful information gleaned from massive and otherwise unmanageable resources. Traditional recommendation algorithms in digital libraries are based on textual similarities between documents. This paper gives a definition of degree of interest. It considers three factors: textual similarities between documents, informational volume, and informational novelty. This reflects user's interest better than textual similarity alone. An effective interest-based recommendation algorithm was then proposed. Theoretical analysis and experimental evaluations demonstrated that the recommendation algorithm based on the degree of interest can improve both the completeness and accuracy of recommendations when compared to recommendation algorithms based on similarity and mixed recommendation algorithms based on graph.

同期刊论文项目
期刊论文 15 会议论文 6
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823