在这篇论文,它被看那稳定模型语义,完美的模型语义,;分离逻辑程序的部分稳定模型语义关于多项式时间模型等价物减小有一样的富有表达力的力量。也就是说拿完美的模型语义;象一个例子语义的稳定模型,任何逻辑程序 P 能在另一逻辑程序 P ′的多项式时间被转变以便完成式当模特儿(分别地稳定模型) P 1-1 对应于 P ′的稳定模型(分别地完美的模型) ,;通讯能在多项式时间也被计算。然而,不那样,最小模型语义比另外的提及的语义有更弱的表现力多项式层次将崩溃到 NP。
In this paper, it is shown that stable model semantics, perfect model semantics, and partial stable model semantics of disjunctive logic programs have the same expressive power with respect to the polynomial-time model-equivalent reduction. That is, taking perfect model semantics and stable model semantic as an example, any logic program P can be transformed in polynomial time to another logic program P' such that perfect models (resp. stable models) of P i-i correspond to stable models (resp. perfect models) of P', and the correspondence can be computed also in polynomial time. However, the minimal model semantics has weaker expressiveness than other mentioned semantics, otherwise, the polynomial hierarchy would collapse to NP.