位置:成果数据库 > 期刊 > 期刊详情页
基于最大熵的依存句法分析
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学深圳研究生院智能计算研究中心,广东深圳518055
  • 相关基金:基金项目:自然科学基金资助项目(60435020,90612005);国家863高科技计划资助项目(2006AA012197)
中文摘要:

该文提出并比较了三种基于最大熵模型的依存句法分析算法,其中最大生成树(MST)算法取得了最好的效果。MST算法的目标是在一个带有权重的有向图中寻找一棵最大的生成树。有向图的每条边都对应于一个句法依存关系,边的权重通过最大熵模型获得。训练和测试数据来源于CoNLL2008 Share Task的公用语料。预测的F1值在WSJ和Brown两个测试集上分别达到87.42%和80.8%,在参加评测单位中排名第6。

英文摘要:

This paper presents three algorithms for dependency parsing based on the Maximum Entropy Models. The Maximum Spanning Tree (MST) algorithm achieves the best result. The target of MST is to find a Maximum Spanning Tree in a directed graph. Each edge of the directed graph corresponds to a dependency relation of the dependency parser, and the weights of the edges are obtained by using a Maximum Entropy Model. The training and test data sets are the CoNLL2008 share task corpora. The system achieves F1 scores of 87.42 and 80.8 for WSJ and Brown test data respectively, ranking sixth among all the competition teams.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136