提出了极小线性码和极小线性码链的定义,对极小线性码[n,k;q]的一类特殊子码,通过删除其某一分量上的码元,构造出一类新的极小线性码.证明了:若C是一个[n,k;q]极小线性码,且当C⊥的极小距离〉2时,由上述方法可构造出一个极小线性码链.基于这个极小线性码链,给出一种动态的可验证的秘密共享体制,与以往的(t,n)门限秘密共享方案相比,该方案不仅有更丰富的接入结构,且有较高的安全性和实用性.
Give out minimal linear code is defined,for a class of special subcode of minimal linear codes ,a new class of minimal linear codes is constructed by deleting one coordinator of all code words.Furthermore,we define minimal linear code chain and prove that if C is an minimal linear code and the minimal distance of C⊥ is larger than 2,then a minimal linear code chain can be constructed by this method.Based on the minimal linear code chain,a novel dynamic and verifiable secret sharing scheme is proposed.Compared with the former(t,n) threshold secret-sharing scheme,the proposed scheme not only has more interesting access structure,but also is of higher security and practicality.